
Neural Networks

Muskula Rahul

1 Structure of a Neural Network

A neural network is composed of interconnected layers of nodes (neurons), mimicking the human brain.
These layers are organized to process data through a series of transformations, allowing the network to learn
complex patterns and make predictions. The primary layer types are:

• Input Layer: This layer acts as the entry point for the raw data. Each node in the input layer
represents a feature or attribute of the input data. The number of nodes in this layer corresponds to
the dimensionality of the input.

• Hidden Layers: These intermediate layers perform the core computations. Each hidden layer consists
of multiple neurons that apply weighted sums and activation functions to the input they receive. Deep
networks have multiple hidden layers, enabling them to learn hierarchical representations of the data.
The more hidden layers, the more complex the functions the network can approximate.

• Output Layer: The final layer produces the network’s prediction. The number of output nodes
depends on the nature of the task. For example, a binary classification task would have one output
node, while a multi-class classification task would have one node for each class.

Within each layer, neurons are interconnected. A fully connected or dense layer implies that each
neuron in a layer is connected to every neuron in the subsequent layer. This interconnectedness facilitates
the flow of information and the learning of relationships between features.

The mathematical representation of a neural network’s output y is given by:

y = f(X;W,b)

Where:

• X represents the input vector.

• W denotes the set of weights associated with the connections between neurons across all layers. These
weights are adjusted during training to minimize the error.

• b represents the set of biases for each neuron across all layers. Biases introduce an offset, allowing the
network to model more complex functions.

• f symbolizes the overall function computed by the network. This function is typically a composition
of linear transformations (weighted sums plus biases) and non-linear activation functions.

neuralnets.dev Muskula Rahul

2 Forward Propagation

Forward propagation is the process of passing input data through the neural network to generate an output
prediction. This process involves a series of calculations at each layer, starting from the input layer and
proceeding sequentially to the output layer.

2.1 Linear Transformation

Each neuron in a layer performs a linear transformation on its inputs. This involves calculating a weighted

sum of the inputs and adding a bias term. Mathematically, the output z
(l)
i of neuron i in layer l is expressed

as:

z
(l)
i =

∑
j

w
(l)
ij a

(l−1)
j + b

(l)
i

where:

• w
(l)
ij is the weight connecting neuron j in layer l − 1 to neuron i in layer l.

• a
(l−1)
j is the activation (output) of neuron j in the previous layer (l − 1). For the input layer, a(0) is

the input vector X.

• b
(l)
i is the bias term associated with neuron i in layer l.

2.2 Activation Functions

Activation functions introduce non-linearity into the network. This non-linearity is essential for enabling the
network to model complex, non-linear relationships in the data. Without activation functions, the network
would simply be a series of linear transformations, limiting its expressive power. Common activation functions
include:

• Sigmoid: σ(z) = 1
1+e−z — Outputs values between 0 and 1, often used in the output layer for binary

classification.

• ReLU (Rectified Linear Unit): ReLU(z) = max(0, z) — Computationally efficient and effective in
mitigating the vanishing gradient problem. Popular in hidden layers.

• Leaky ReLU: Leaky ReLU(z) =

{
z, z > 0

0.01z, z ≤ 0
— Addresses the ”dying ReLU” issue by allowing

a small gradient for negative inputs.

• Tanh (Hyperbolic Tangent): tanh(z) = ez−e−z

ez+e−z — Outputs values between -1 and 1, sometimes
preferred over sigmoid.

The activation function is applied to the linear transformation output (z), resulting in the activation a
(l)
i :

a
(l)
i = g(z

(l)
i) where g is the activation function.

https://neuralnets.dev

neuralnets.dev Muskula Rahul

2.3 Forward Propagation Example

import numpy as np

def relu(z):

return np.maximum(0, z)

def sigmoid(z):

return 1 / (1 + np.exp(-z))

def forward_propagation(X, layers, activations):

cache = {} # Store intermediate values for backpropagation

a = X

for i, (weights, biases) in enumerate(layers):

z = np.dot(a, weights) + biases

a = activations[i](z)

cache[f"z{i+1}"] = z

cache[f"a{i+1}"] = a

return a, cache # Return final activation and cached values

In this code:

• layers: A list of tuples, where each tuple contains the weight matrix and bias vector for a layer.

• activations: A list of activation functions, one for each layer.

• cache: Stores intermediate values (z and a) for each layer, which are needed during backpropagation.

3 Loss Functions

A loss function quantifies the error between the network’s predictions and the true target values. The choice
of loss function depends on the specific task:

3.1 Classification Loss Functions

Binary Cross-Entropy: Used for binary classification problems (e.g., spam/not spam). It measures the
dissimilarity between the predicted probability distribution and the true distribution.

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where N is the number of samples, yi is the true label (0 or 1), and ŷi is the predicted probability.
Categorical Cross-Entropy: Used for multi-class classification problems (e.g., image classification).

It generalizes binary cross-entropy to multiple classes.

L = − 1

N

N∑
i=1

C∑
c=1

yic log(ŷic)

where C is the number of classes, yic is 1 if sample i belongs to class c (and 0 otherwise), and ŷic is the
predicted probability for class c.

https://neuralnets.dev

neuralnets.dev Muskula Rahul

3.2 Regression Loss Functions

Mean Squared Error (MSE): Commonly used for regression tasks (e.g., predicting house prices). It
calculates the average squared difference between predicted and true values.

L =
1

N

N∑
i=1

(yi − ŷi)
2

Mean Absolute Error (MAE): Another regression loss function that measures the average absolute
difference between predicted and true values. Less sensitive to outliers than MSE.

L =
1

N

N∑
i=1

|yi − ŷi|

The goal of training is to minimize the chosen loss function, bringing the network’s predictions closer to
the true values.

4 Backward Propagation

Backward propagation, or backpropagation, is the central algorithm for training neural networks. It effi-
ciently calculates the gradients of the loss function with respect to the network’s weights and biases. These
gradients are then used to update the weights and biases, iteratively improving the network’s performance.

4.1 Chain Rule and Gradient Computation

Backpropagation relies on the chain rule of calculus. The chain rule allows us to decompose the gradient of
the loss function with respect to a weight w into a product of partial derivatives:

∂L

∂w
=

∂L

∂a
· ∂a
∂z

· ∂z
∂w

This allows us to calculate the gradient by starting from the output layer and working backward, layer
by layer. The gradients are accumulated as the error signal propagates through the network.

4.2 Optimizing with Gradient Descent

Gradient descent uses the calculated gradients to update the weights and biases, moving them in the direction
that reduces the loss. The basic update rule is:

w := w − α
∂L

∂w

where α is the learning rate, a hyperparameter that controls the step size of the updates.

Advanced Optimization Techniques

• Momentum: Adds a fraction of the previous update to the current update, accelerating convergence
and helping to escape local minima.

• Adam (Adaptive Moment Estimation): Combines momentum with adaptive learning rates for
each parameter, providing efficient and robust optimization.

• RMSprop (Root Mean Square Propagation): Another adaptive learning rate method that ad-
dresses the vanishing gradient problem.

https://neuralnets.dev

neuralnets.dev Muskula Rahul

4.3 Backpropagation Code Example

def backward_propagation(X, y, weights, biases, cache, learning_rate=0.01):

Retrieve cached values

a = cache["a1"]

z = cache["z1"]

Calculate gradients (example for binary cross-entropy and sigmoid)

m = X.shape[0] # Number of samples

dz = a - y # Gradient of loss w.r.t. z

dw = (1/m) * np.dot(X.T, dz) # Gradient of loss w.r.t. weights

db = (1/m) * np.sum(dz) # Gradient of loss w.r.t. bias

Update weights and biases

weights -= learning_rate * dw

biases -= learning_rate * db

return weights, biases

5 Training the Neural Network

Training a neural network involves repeatedly performing forward propagation, calculating the loss, per-
forming backward propagation to compute gradients, and updating the weights and biases. This iterative
process continues for a specified number of epochs or until a desired level of performance is achieved.

Regularization Techniques

Regularization techniques help prevent overfitting, where the network performs well on the training data but
poorly on unseen data.

L1 Regularization: Adds a penalty proportional to the absolute value of the weights to the loss function.
Encourages sparsity in the weights. The L1 regularization term can be expressed as:

L1 = λ

n∑
i=1

|wi|

where λ is the regularization strength and wi are the model weights.
L2 Regularization (Weight Decay): Adds a penalty proportional to the square of the weights to the

loss function. Helps prevent weights from becoming too large. The L2 regularization term can be written
as:

L2 =
λ

2

n∑
i=1

w2
i

Dropout: Randomly deactivates neurons during training, forcing the network to learn more robust
features.

https://neuralnets.dev

neuralnets.dev Muskula Rahul

Training Loop with Regularization and Adam Optimizer

def train(X, y, layers, epochs=100, learning_rate=0.001, beta1=0.9, beta2=0.999,

epsilon=1e-8):

Initialize weights, biases, and Adam parameters

m, v = {}, {}

for i, (weights, biases) in enumerate(layers):

m[i], v[i] = np.zeros_like(weights), np.zeros_like(weights)

for epoch in range(epochs):

Forward propagation

a, cache = forward_propagation(X, layers, activations=[relu]*len(layers))

Calculate loss

loss = -np.mean(y * np.log(a) + (1 - y) * np.log(1 - a))

Backward propagation and Adam update

for i in reversed(range(len(layers))):

weights, biases = layers[i]

m[i], v[i] = update_parameters_with_adam(weights, biases, m[i], v[i],

learning_rate, epoch, beta1, beta2, epsilon)

if epoch % 10 == 0:

print(f"Epoch {epoch}, Loss: {loss}")

return layers

Conclusion

Neural networks are powerful tools for learning complex patterns from data. Forward and backward propa-
gation are the core algorithms that drive their training. The choice of architecture, loss function, optimizer,
and regularization techniques plays a crucial role in the success of a neural network application. Contin-
uing research and development in the field of deep learning are constantly expanding the capabilities and
applications of neural networks.

https://neuralnets.dev

	Structure of a Neural Network
	Forward Propagation
	Linear Transformation
	Activation Functions
	Forward Propagation Example

	Loss Functions
	Classification Loss Functions
	Regression Loss Functions

	Backward Propagation
	Chain Rule and Gradient Computation
	Optimizing with Gradient Descent
	Backpropagation Code Example

	Training the Neural Network

